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I review some recent results on canonical quantum gravity in the spin network
representation. A set of ambient isotopy spin network invariants is introduced.
These invariants are the natural extension to spin networks of the Vassiliev
invariants. It is shown that this set is loop differentiable in the sense of
distributions. The quantum gravity constraints are written in terms of loop
derivatives. It is explicitly shown that Vassiliev invariants solve the
diffeomorphism constraint. The regularized Ashtekar Hamiltonian constraint is
studied, and its action on valence-four Vassiliev invariants discussed.

1. INTRODUCTION

I describe recent results on canonical quantum gravity, knots, and spin

network invariants developed in collaboration with J. Pullin from the Center

for General Relativity and Gravitation of The Pennsylvania State University

and J. Griego from Universidad de la RepuÂblica, Montevideo. More details
can be found in refs. 1±3.

In recent years, the kinematics [4] of canonical loop quantum gravity,

which describes the space or solutions of six of the seven Ashtekar constraints,

has been well understood and has led to several appealing results. However, we

do not have a fully satisfactory control of the dynamics and the Hamiltonian

constraint. If a dynmical description is not found the kinematical setup should
be abandoned, no matter how appealing are the physical results.

Let us recall the main results. Starting from the new variables introduced

by Ashtekar, one can construct a representation of the quantum theory purely

in terms of loops (the loop representation), and a suitable basis for describing

quantum states is given by spin networks. That is, quantum states are labeled
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by spin networks, multivalent graphs embedded in three-dimensional space,

with a system of weights associated to each side of the graph. If one imposes

the diffeomorphi sm constraint, one considers functions of the diffeomorphi sm
class of a spin network. There exists a precise sense in which one can endow

such a space with an inner product [4], in terms of which spin network states

are orthonormal.

In this context, there exists a proposal for the action of the Hamiltonian

constraint of quantum gravity due to Thiemann [5]. In such a proposal the

Hamiltonian constraint weighted by a lapse is just given by a topological
operator acting at the vertices of the spin networks. The Hamiltonian constraint

commutes with itself, as is expected should happen in a diffeomorphism-

invariant context. It is not possible to check the constraint algebra in the

non-diffeomorphism-invariant kinematical space of cylindrical functions

because the diffeomorphism generator is not well defined there. However, it

is possible to enlarge the diffeomorphism-invariant space [6] in such a way
that Thiemann’ s Hamiltonian is still well defined. One can show that in this

bigger space the Hamiltonian constraint continues to commute with itself.

This suggests that an inconsistency could appear, since the right-hand side

of the classical Poisson bracket vanishes only when the diffeomorphism

constraint is satisfied. Even though one can arrange the right-hand side of
the commutator to also vanish, it appears that the price to pay is tantamount

to having a degenerate metric [7]. It also appears that this result is rather

generic, holding for many possible detailed forms of the action of the Hamilto-

nian at vertices. Other nonlocal proposals also seem to suffer of difficulties

with the constraint algebra [8].

On the other hand, over the last few years, a variety of formal results
has been obtained on a different space of sates in which the loop derivative

is well defined. In particular, a proposal for the Hamiltonian constraint of

quantum gravity in terms of loop derivatives exists, and it has been shown

that at a formal level the classical Poisson brackets are reproduced by the

quantum theory [9]. The main drawback of this space of states is twofold:

on one hand there is the fact that the loop derivative does not appear to exist
on generic diffeomorphism-invariant states. This is due to the fact that such

states change discontinuously when one changes the loops and therefore one

cannot introduce a differential operator in loop space. Moreover, definitions

of the Hamiltonian in terms of the loop derivative have only been attempted

in the context of multiloops (not spin networks). In this context, each type

of loop and intersection has to be treated individually, and therefore most
results (for instance, proofs that certain states were annihilated by the con-

straints) were only of a partial nature.

The loop derivative [10] is a differential operator in loop space that

arises by considering two loops that differ by an infinitesimal element of
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area as ``close.’ ’ It acts on basepointed objects (either loops or spin networks)

by adding a path starting at the basepoint up to a point x, where it introduces an

infinitesimal planar loop, and retraces back to the basepoint. The definition is

(1 1 s ab D ab( p x
o)) C ( g ) 5 C ( g + d g ) (1)

where p is a path from the origin to x, and the loop g + d g is shown in Fig.

1. Here s ab 5 d u [a d vb] is the infinitesimal element of area spanned by the
two vectors

-
u and

-
v defining the parallelogram one adds at the end of the

path p . For a spin network acting at a line on the network, the definition is

exactly the same as for loops, except that the path becomes a line of the

same valence as the line on which the basepoint lies, and the infinitesimal

loop is also of the same valence as the path. It is important to notice that

the loop derivative does not change the connectivity of a spin net. For instance,
the derivative of a theta-net is a theta-net.

The purpose of this paper is to note that there exists a set of especially

important knot invariants that appear to have the property of being loop

differentiable. As a consequence, one can operate on them in terms of the

Hamiltonian and diffeomorphism constraints of quantum gravity written in

terms of loop derivatives in a more systematic way. The invariants in question
are the Vassiliev invariants, which in turn are conjected [11] to be complete

enough to be able to separate knots. Moreover, they have recently been

generalized to the spin network context [12]. We will show explicitly that

these invariants are annihilated by the diffeomorphi sm constraint of quantum

gravity written in terms of loop derivatives. We will also start the analysis

of the action of the regularized Hamiltonian constraint of the theory. All of
this will be done in terms of spin networks, which allows us to discuss in a

unified way all types of intersections and loops.

More specifically, in Section 2 we show that it is possible to define a

denumerable set of ambient isotopy spin-knot invariants. These invariants

are the natural extension to spin networks of the Vassiliev invariants. In
Section 3 we show that this set is loop differentiable in the sense of distribu-

tions. In Section 4 we analyze the diffeomorphism constraint. Contrary to what

happens in the space of cylindrical functions, the diffeomorphism constraint is

well defined on an arbitrary loop-differentiable spin network. All the Vassiliev

s-knot invariants solve this constraint. Finally, in Section 5 the regularized

Ashtekar Hamiltonian constraint is defined in the space of loop-differentiable

Fig. 1. The loop that defines the loop derivative.
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spin networks. We show that the Chern±Simons state in the spin network

representation solves the constraint with cosmological constant, and we com-

pute the explicit action of this constraint on the Vassiliev invariants.

2. PRELIMINARIES

2.1. Spin Networks

Spin networks are constructed considering graphs that are embedded in

three dimensions. The graphs are multiconnected with intersections that can
be trivalent or of higher valence. Each connecing line is associated with a

holonomy of the connection A i
a in a given representation of the group in

question [in our case, SU(2), representations are labeled by a (half)integer].

One can construct a generalization of the trace of the holonomy (Wilson

loop) which we call a Wilson net, by considering the traces of the holonomies

along the Wilson nets joined by appropriate `̀ intertwiners’ ’ at the intersec-
tions. The intertwiners consist of invariant tensors in the group. An example

of a Wilson net for the `̀ theta’ ’ network is given by

j3 5 1 j1 j2 j3
n1 n2 n3 2 , U ( j1)n1

m1 U ( j2)n2
m2 U ( j3)n3

m3 1 j1 j2 j3
m1 m2 m3 2 (2)j1 2

There are several possibilities to connect the invariant tensors and the

holonomies and this has led to different conventions in the definition of the

spin networks. The convention we will choose will follows closely that of
Witten and Martin [13, 14] and differs from those of other authors in the

field [15, 5, 16]. For a detailed discussion see refs. 2 and 3. With the above

definition, the Wilson net has certain properties. In particular there is a

dependence of the Wilson net on the orientation of the vertices. We now

modify the definition in order to have an invariant that does not depend on
the orientation of the vertices. This will correspond to the normalization of

the Wilson net given by Witten and Martin. What we do is multiply the

definition introduced up to now times a factor given by

V 6 5 exp 1 6
i p
2

[ j1 1 j2 1 j3] 2 ! 4 (2j1 1 1)(2j2 1 1)(2j3 1 1) (3)

for each vertex in the spin network. With this factor, one can show that the

Wilson net defined is invariant under changes from 1 - to 2 -type vertices.
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It is worthwhile noticing that in the work of Kauffman and Lins [16] on

invariants of spin networks the normalization is different.

2.2. Knot Invariants for Spin Networks

We wish to study invariants that represent the transform of the Chern±

Simons state into the spin network basis. That is, we are interested in expres-

sions of the form

E( G , k) 5 # DA exp(ikSCS)W( G , A) (4)

where G is a spin network and W( G , A) is the Wilson net we introduced

in the previous subsection. This kind of integral has been analyzed using

monodromy techniques [13, 14] and variational techniques [1, 17]. The result

is a regular isotopic invariant of spin networks. The techniques do not give
a unique answer for the invariant, but there are several possibilities, tanta-

mount to having several definitions for the measure DA. Each possibility is

uniquely characterized by prescribing a value for the invariant on the so-

called theta-net. The choice of Witten and Martin [13, 14] is

U ( j1, j2, j3) 5 E 5 ! D 1 D 2 D 3 (5)1 2 3

with

5
q j 1 1/2 2 q 2 j 2 1/2

q1/2 2 q 2 1/2D j 5 E (6)

and q 5 exp 2 p i/k. We have

E
1 2

3

5 ( 2 1) j1 1 j2 1 j3 exp[i p (h1 1 h2 2 h3)] E (7)1 2

3
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hi [
ji( ji 1 1)

k
(8)

E 5 exp( 2 2 p ihj )E 5 exp(2 p ihj ) E

(9)

5
d jj8

D j

EE E (10)

¢

E
1

2 3

5
1

! D 1 D 2 D 3

E E (11)

1

2 3

1

2 3

E 5 o
i 5 ) j1 1 j2 )

i 5 ) j1 2 j2 ) ! D i

D 1 D 2

E (12)
1 2

1

1 2

2

E

1 2

5 o
i 5 ) j1 1 j2 )

i 5 ) j1 2 j2 ) ! D i

D 1 D 2

( 2 1) j1 1 j2 1 j3 exp(i p (h1 1 h2 1 h3)) E (13)

1

1

2

2

E (14)5 o
) j1 1 j4 )

j 5 ) j1 2 j4 ) H j2 j1 j

j4 j3 l J
q

E
1

2 3

4 1

2 3

4
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where the expression in curly braces is the q-deformed Racah symbol, which

is defined as

E
1

2
3

4

(15)H j2 j1 j

j4 j3 l J
q

5
! D 1 D 2 D 2 D 4

The above expressions completely characterize the invariant for any

spin network. The explicit expression for the value of the invariant in the last

expression, ª the tetrahedron diagram,º can be computed using the recoupling
identity (14) in conjunction with the definitions of the delta and theta diagrams

(6) and (5) (see ref. 14 for an explicit computation).

The moves (9) and (8) correspond to diffeomorphisms; therefore the

invariant constructed is not invariant under diffeomorphi sms. In other words,

the invariant is a diffeomorphism invariant of ribbons and not of ordinary

loops. One needs a framing (a prescription for assigning a ribbon to each
loop) to have a well-defined invariant.

However, it was noted early on in the context of loops, and later in

the context of spin networks [12], that the dependence on framing can be

concentrated on an overall factor. In order to isolate this factor, one simply

considers a power series expansion in k 5 (2 p i)/k and extracts the linear
coefficient in k , v1( G ). That coefficient, exponentiated, is the overall factor.

This constructions is discussed in detail in ref. 12, where it is shown that it

indeed leads to an ambient isotopic invariant, in other words, a genuine

diffeomorphism-invariant function of loops. The resulting invariant is then

given by

E( G , k ) 5 E( G , 0) exp(v1( G ) k ) P( G , k ) (16)

where P( G , k ) is a spin network generalization of the Jones polynomial (it

reduces to it when G is a simple loop in the fundamental representation) and

v1 is the first coefficient in the expansion in powers of k (for a single loop

it reduces to the self-linking number). The factor E( G , 0), which corresponds

to the evaluation of the invariant for k 5 0, contains information about the
coloring of the graph, and no information about the embedding. It can be

thought of as the evaluation of the Wilson net for a flat connection.

It was shown by Alvarez and Labastida [18] in the case of G being

simple loops, and later generalized for links, that the invariant E( G , k ) can
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be written as the exponential of a linear combination of primitive Vassiliev

invariants,

E( G , k ) 5 E( G , 0) exp 1 o
`

i 5 1
o
di

j 5 1
a ij( G )rij (G) k i 2 (17)

where a ij ( G ) are the primitive Vassiliev invariants, which are only dependent

on the embedding of the loop (they are independent of the gauge group of
the Chern±Simons theory). di is the number of primitive Vassiliev invariants

of order i, G is the gauge group [for our case SU(2)], and rij are group-

dependent coefficients. We will assume that a similar structure appears for

the case of generic SU(2) spin networks, specifically

E( G , k ) 5 E( G , 0) exp 1 o
`

i 5 1

vi( G ) k i 2 (18)

That is, we assume that the invariant is still given by the exponentiation

of a set of ª Vassilievº invariants for spin nets, but we are not decomposing

the expression in terms of ª primitiveº invariants, which is a structure that at

present is not known in the spin network context. The vi ( G ) are ambient
isotopic for i . 1.

By constructing these invariants of spin networks, we have bypassed

one of the main obstacles that working with loops and links had in this

context: how to comply with the Mandelstam identities. The invariants of

spin nets we have constructed automatically take care of this. An important

missing element in the spin network context is the idea of how ª genericº is
the set of vi( G ). In the context of loops it is conjectured that the primitive

Vassiliev invariants are enough to distinguish all knots. In the case of spin

networks we are not working with primitive invariants and therefore it is

questionable how generic the basis of invariants one is considering is. This

is important if one is making the case that these invariants are the ª arenaº

where one is going to discuss quantum gravity. If a decomposition in terms
of primitive invariants of the exponential were known, the techniques we

will develop will still be applicable. However, since it is not known how to

do this decomposition, we will work with the vi . It is worthwhile pointing

out that the techniques we will introduce later in this paper to operate with

loop derivatives and diffeomorphism constraints are geometrical in nature

and not group dependent. Since it is known that all Vassiliev invariants can
be constructed from the Chern±Simons integral with arbitrary groups, and

our technique is not group dependent, we therefore have a de facto method

to operate on all Vassiliev invariants. For concreteness we will concentrate

on the case of SU(2).



Canonical Quantum Gravity on the Space of Vassiliev Invariants 1071

3. LOOP DIFFERENTIABILITY OF THE VASSILIEV
INVARIANTS

We now wish to apply the loop derivative to the invariants we introduced

in the previous section. A priori one expects that such a quantity does not

exist. In particular, for a generic knot invariant, the loop derivative indeed

does not exist. This is due to the fact that knot invariants are discontinuous
functions in the space of loops. Loop derivatives change the topology of

loops (for instance, they can remove intersections [19]), and therefore the

limit defining the derivative is ill defined. What we will show here is that

due to the properties of the invariants of Chern±Simons under deformations

of the loops given by the skein relations, one can introduce a reasonable

definition of the loop derivative for these kinds of invariants. It is similar to
try to define the derivative of a discontinuous functions by allowing the

derivative to take value in the distributions. We will analyze the consistency

of this result with the properties of the invariants. The strategy is as follows.

The invariants are defined as a functional integral of a Wilson net with a

weight function. The only dependence on the spin net is in the Wilson net,

so we will assume that the loop derivative of the invariant is equal to the
functional integral of the action of the loop derivative on the Wilson net,

with the appropriate weight factor,

D ab( p x
o)E( G , k ) [ # DA exp(ikSCS[A]) D ab( p x

o)W( G , A) (19)

Here we have assumed that the limit defining the loop derivative and the

one defining the path integral are interchangeable.

The starting point of the calculation is the action of the loop derivative
on a holonomy [in the j representation of SU(2)] associated to an edge eB

A of

the spin network, containing the basepoint o,

D ab( p x
o)U

( j)(eB
A)m

n 5 [U ( j)(eo
A)U ( j)( p x

o)F
( j)
ab(x)U ( j)( p 2 1x

o)U
( j)(eB

o )]mn (20)

and the fundamental relation satisfied by the Chern±Simons state,

F ( j)
ab(x) exp(ikSCS[A]) 5 2

4 p i

k
e abc

d
d A( j)

c (x)
exp(ikSCS[A]) (21)

So the idea works exactly in the same way it did for ordinary loops [19, 1];

the loop derivative acting on a holonomy produces an Fab, which can be
reexpressed as a functional derivative acting on the exponential of the Chern±

Simons form. The last step is to perform a formal integral by parts of the

functional derivative and have it act on the holonomies of the spin network

that were left by the action of the loop derivative. The end result is
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D ab( p x
o)E( G , k )

5 2 2 k o
eD
C P G

e abc # eD
C

dyc d 3(x 2 y)

3 ^ ? ? ? U ( j)(eo
A)U ( j)( p x

o) t J
( j)U

( j)( p 2 1x
o)U

( j)(eB
o ) ? ? ? U (k)(ey

C) t J
(k)U

(k)(eD
y ) ? ? ? & CS

(22)

where t J
( ) are the SU(2) generators2 in the j representation, and the expectation

value is assumed to be taken with respect to the measure DA exp(iSCS), and

the dots refer to the fact that we just highlight the portion of the spin network

where the loop derivative acts. It is understood that the products of holonomies

continue until the net is closed and the appropriate traces are taken. A pictorial

representation of the quantity within the expectation value is given in Fig. 2.

The above expression can be rearranged using the Fierz identity and
the recoupling properties of SU(2). One gets the final expression

D ab( p x
o)E( G , k )

5 o
eD
C P G

o
2j

m 5 0

2 k e abc # eD
C

dyc d 3(x 2 y) l 6
m ( j, k)

CS

(23)

where

l 6
m ( j, k)

5 ( 2 1) j 7 k o
j 1 k

l 5 ) j 2 k )
( 2 1)l 2 (m 7 m)/2(2m 1 1)(2l 1 1) r l H j j m

k k l J (24)

So the end result is that the loop derivative acting on the invariant

E( G , k ) is nonvanishing only if the endpoint of the path p x
o of the loop

Fig. 2. The loop derivative acting on a spin network.

2 Our convention for the SU(2) generators is to take the Pauli matrices divided by 2. This differs
from other authors [5].
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derivative falls upon one of the lines of the spin network. The end result is,

up to a factor, proportional to the invariant E( G 8, k ), where G 8 is a new graph

obtained by adding the path p x
o to the original graph G . Notice that the action

of the loop derivative is covariant under diffeomorphisms, in the sense that

a diffeomorphism would shift both the graph G and the path p x
o and therefore

would act as a diffeomorphi sm on the graph G 8. It is also worthwhile noticing

that the general form of equation (23) is true for any gauge group; the only

differences would appear in the recoupling coefficients l and the correspond-

ing irreducible representations associated with the graph. This emphasizes

the geometrical nature of the action of the loop derivative and may open

possibilities for generalizing this construction for invariants that do not neces-

sarily arise from SU(2) groups. The importance of this is that it appears that

Vassiliev invariants for spin nets might arise as linear combinations of prod-

ucts of ª primitiveº invariants associated only with the topological embedding

of the graph of the spin net, times some group-dependent factors that contain

information about the valences of each line in the spin net. The loop derivative

acts on such objects by ignoring the group prefactors and acting on the factors

depending on the embedding of the spin net diagrams. In particular, if one

acts on E( G , 0), since it does not have information about the embedding, the

loop derivative automatically gives zero.

The loop derivative as defined in this paper has several appealing proper-

ties that other differential operators in loop space do not have (see ref 10 for

more details). One property we wish to emphasize is that the loop derivative

satisfies Leibnitz’ rule. It acts on a product of functions exactly like an

ordinary derivative. This allows us, when evaluating operators on products

of knots [as, for instance, when we extract the frame-dependent prefactor

and the E( G , 0)], to perform explicit calculations.

For instance, we can compute the action of the loop derivative on any

Vassiliev invariant of type vn, by computing the logarithmic derivative of

E( G , k ). The final result is

D ab( p x
o)vn( G ) 5 2 o

ej P G
o
2j

m 5 0

l m e abc # ej

dyc d 3(x 2 y)
E( G m, 0)

E( G , 0)

1

(n 2 1)!

3 F d n 2 1

d k n 2 1 exp 1 o r
(vr( G m) 2 vr( G )) k r 2 G k 5 0

and the action is nonvanishing only if o, x fall on two different lines of G ,

and the spin net G m is obtained by taking G and adding to it the line p x
o with

valence m.
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4. THE DIFFEOMORPHISM CONSTRAINT

In this section we will introduce the diffeomorphism constraint as a

differential operator in loop space written in terms of the loop derivative.

We will also show that the invariants we introduced in the previous section

will be either annihilated by the constraint in the case of ambient isotopy

invariants, or will transform appropriately in the case of regular isotopic

invariants.
Let us consider the diffeomorphism constraint of quantum gravity written

in terms of Ashtekar’ s new variables,

CÃ(
-

N ) C [A] 5 # d 3x N(x)aEÄÃb
i (x)FÃi

ab(x) C [A] (26)

Because this expression involves the product of two operators at the same

point, in general we need to regularize it, which we do via a point splitting

function lim e ® 0 f e (x, y) 5 d 3(x, y),

CÃ(
-

N ) C [A]

5 lim
e ® 0 # d 3x # d 3y f e (x, y)N a(x)EÄÃb

i (x)[U( p y
x)FÃab(y)U 2 1( p x

y)]i C [A ] (27)

where in order to preserve gauge invariance we have connected the Fab and

EÄ operators with holonomies along a path p going from x to y.
The above operator, when acting on a Wilson net, can be rewritten in

terms of the loop derivative, as discussed in the context of loops [10]. The

explicit expression is

CÃ(
-

N )W( G , A)

5 lim
e ® 0 # d 3x f e (x, y) o

eB
A P G # e

B
A

dyb N a( y) D ba( p x
y)W( G , A) (28)

One can explicitly check that the action of this operator is a diffeomorphi sm,
provided that the connection A is smooth. In the limit in which the regulator

is removed, the path p shrinks to a point and one ends with a loop with an

infinitesimal closed loop attached at the point x. The addition of this closed

loop is tantamount to displacing infinitesimally the line of the original loop

at the point x.

We will now assume that the generator of diffeomorphisms has in general
the form given by equation (28) in terms of the loop derivative and we will

show that when acting with it on the invariants from Chern±Simons we get

the correct result. This result is nontrivial, since in the path integral that

defines the invariant there are contributions from distributional connections.
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To discuss in a cleaner fashion the action of the diffeomorphism operator

on the invariants, we will consider diffeomorphisms in which the vector
-

N
has compact support. This will allow us to focus on the action of diffeomorph-
isms on individual edges, on vertices, etc., each at a single time. It is immediate

that a generic situation can be analyzed combining all results we will derive.

Let us start with the action at an individual line [we define CÃ(
-

N ) 5 lim e ® 0

CÃe(
-

N )],

CS
5 k o

2j

m 5 0

l 2
m ( j, j ) # dyb # dzc f e (z, y) e abc N a(z)CÃe(

-
N )

3 1±2 [ U (z 2 y)
CS

j

1 U (y 2 z)
CS

] (29)

j

where U are Heaviside functions that order points along the line of the spin net

we are considering. One can easily define them introducing a parametrization.

Now using recoupling and removing the regulator, assuming the follow-
ing regularization function,

f e (y, z) 5
3

4 p e 3 U ( e 2 ) z 2 y ) ) (30)

one gets

CÃ(
-

N )
CS

5
k

8 p o
2j

m 5 0

l 2
m ( j, j )

( 2 1)2j

(2j 1 1) #
1

0

ds e zbc
NÇ (s)ayÇ (s)cyÈ (s)b

) yÇ (s) ) 3 CS
(31)

where we have introduced a parametrization such that dya 5 yÇ (s)a ds, and

dots refer to total derivatives with respect to s. We can summarize the above

result by saying that, for diffeomorphisms of compact support acting on lines

of the spin net, we have that
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CÃ(
-

N )E( G , k ) 5 k m ( j )w(
-

N )E( G , k ) (32)

where m ( j ) 5 S 2j
m 5 0 l 2

m ( j, j )( 2 1)2j/(2j 1 1) is a recoupling factor, which
depends on the weight of the line in question; w(

-
N ) is the writhe introduced

in the line by the action fo the diffeomorphism along the vector
-

N . We

therefore see that the diffeomorphism has a well-defined limit. The result is

dependent on a background metric through the writhe, as expected for a

regular isotopic invariant. Notice that the result decomposes as a product of
a factor depending entirely on the ª coloringº of the spin net and another

factor depending only on the embedding of the net in three dimensions. What

we have therefore recovered is a formula that contains the information about

the noninvariance of E( G , k) under the addition of twists, given by the skein

relation (9). This skein relation could be reobtained exactly by exponentiating

the action of the loop derivative, as discussed in ref. 1, but we will not repeat
the calculation here for brevity. The action of the diffeomorphism at an

intersection gives a similar contribution.

Here we will show that the diffeomorphism operator we introduced

vanishes when acting on the ambient isotopic invariants, concretely P( G , k ).

Therefore, it annihilates every Vassiliev invariant. In order to compute the

action, let us recall equation (18),

E( G , k ) 5 E( G , 0) 1 1 1 v1( G ) k 1 (2v2( G ) 1 v1( G )2)
k 2

2
1 ? ? ? 2 (33)

and analyze the action of the diffeomorphism on E( G , k ) order by order in

k . To order zero we get,

CÃ(
-

N )E( G , 0) 5 0 (34)

which is correct, since E( G , 0) does not depend on the embedding of the

spin net, just on its coloring, and it is immediately annihilated by the loop

derivative. At the next order, we have

CÃ(
-

N )v1( G ) 5 m ( j )w(
-

N ) (35)

where we have assumed the diffeomorphism as acting on an isolated line of

valence j; a similar formula holds for the intersections with a different coloring
weight. As before, w(

-
N ) is the writhe induced in the line by the vector field

-
N . If we now take advantage of the fact that the diffeomorphism operator

satisfies Leibnitz’ rule, we see that combining (32) and (35), we get

CÃ(
-

N ) exp( 2 k v1( g ))E( G , k ) 5 0 (36)

and therefore we see that indeed the diffeomorphism constraint annihilates

all the su(2) Vassiliev invariants, namely,
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CÃ(
-

N )P( G , k ) 5 CÃ(
-

N ) exp 1 o
`

n 5 2

vn( G ) k n 2 5 0 (37)

The diffeomorphism constraint is defined on arbitrary Chern±Simons

states, not only on the ones related to the SU(2) group. This allows us to
show that it annihilates all Vassiliev invariants and any function of the

Vassiliev invariants. As we mentioned before, there are indications that Vassi-

liev invariants may constitute a basis of diffeomorphism-invariant functions

of loops. The definition of the loop derivative we introduced in the spin

network context is compatible with the fact, namely it naturally leads to a
diffeomorphism constraint that annihilates explicitly all Vassiliev invariants.

5. HAMILTONIAN CONSTRAINT

Let us now consider the double-densitized Hamiltonian constraint of

quantum gravity, possibly with a cosmological constant L ,

HÃ(M ) 5 # d 3x Mg e , e 8, e 9(u, v, w, x)H(u, v, w)

[ HÃ(M ) 5 # d 3x Mg e , e 8, e 9(u, v, w, x) e ijkEÄÃai (u)EÄÃbj (v)[U( p w
u )Fab(w)U( p u

w)]k

(38)

So we have chosen to join the Fab with one of the E ’ s via a holonomy. There

are many other possibilities (for instance, joining all operators via holonomies,
which would yield a gauge-invariant regularization) and they all yield the

same classical expression in the limit e ® 0. A possible regulating function

is defined as

g e , e 8, e 9(u, v, w, x) 5 f e (x, u) f e 1 x,
u 1 v

2 2 f e 1 x,
u 1 v 1 w

3 2 (39)

with f defined as in the diffeomorphi sm constraint. This regulating function

is the same as the one usually considered for the ª Ashtekar±Lewandowskiº

volume operator [4, 20].

To determine the action of the Hamiltonian in terms of spin networks,

we consider the action of the operator we have just defined on a Wilson net.

As is well known, this operator only acts at intersections of the net. At regular
points it gives rise to ª accelerationº terms, which we will omit since they

vanish on diffeomorphism-invariant states [21, 10]. The nonvanishing action

comes from the triads acting at two points on different strands i, k entering

an intersection V,
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H(u, v, w)W

1 2

5 2
i

2 o
i Þ k P V

o
i 1 k

m 5 ) i 2 k )
(2m 1 1) r m(i, k) # ei

dya d 3(u 2 y) # ek

dzb d 3(v 2 z)

3 [ D ab( p w
y 1 ) 2 D ab( p w

y 2 )]W (40)

where in the last diagram all the structure occurs ª at a pointº and points y 6
are identified.

Having the Hamiltonian in terms of the loop derivative allows one to

evaluate its action on any of the invariants we have been discussing. In

particular one can show [3] that the Hamiltonian constraint with a cosmologi-

cal constant term annihilates the invariant E( G , k ).

Another interesting result is that the Hamiltonian vanishes when acting

on Vassiliev invariants at trivalent vertices. This can be straightforwardly
seen by recalling the action of the loop derivative on a Vassiliev (25), and

noting that at a triple intersection, using recoupling, vp( G j) 5 vp( G ). We are

allowed to use recoupling because the loop derivative acts by adding a line

ª at a pointº when evaluated in the action of the Hamiltonian constraint.

Therefore the Hamiltonian constraint vanishes at trivalent vertices.

Another important result concerning the action of the Hamiltonian on
Vassiliev invariants can again be concluded from studying the explicit action

of the loop derivative (25). Combining this expression with (40), one immedi-

ately concludes that the action of the ª doubly densitizedº Hamiltonian we

are considering here is proportional to the ª regularized volumeº (strictly

speaking, it is a volume squared) spanned by three of the tangents entering
at an intersection [22],

Vo
Ã
lijkreg(x, e , e 8, e 9) 5 e abc # ei

dya # ej

dza # ek

dwa g e , e 8, e 9(x, y, z, w) (41)

Concretely, acting on a four-valent vertex labeled by J, the action of the

Hamiltonian is
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g e , e 8, e 9(x, u, v, w)HÃdouble(u, v, w)vn

5 o
I

o
i, j,k P Vertex

Vo
Ã
lijkreg(x, e , e 8, e 9)CIJVn 2 1 (42)

with CIJ is a proportionality factor depending on the valences of the strands

entering the intersection. Similarly, the range of the sum in I is determined

by the type of intersection. The invariant Vn 2 1 is a nonprimitive Vassiliev

invariant of order n 2 1; it will involve sums of products of primitive Vassiliev

invariants of lower orders.
This proportional ity opens the attractive possibility of defining a ª singly

densitizedº Hamiltonian by ª dividing by the regularized volume.º Having a

singly densitized Hamiltonian can potentially lead to a much better defined

operator, since its action could possibly be cast in a background-independent

manner, as proportional to a Dirac delta. This possibility is currently under
study. The action of the Hamiltonian could therefore be cast as

Hsingle(x)vn 5 d (x 2 Vertex) o
I

d IJVn 2 1 (43)

with d IJ another constant factor. Having an operator with such a simple action

is not only remarkable, but will open the possibility of further consistency

checks, like computing the constraint algebra. All these issues are currently

under study and evidently further work is needed to complete this program.
The computation can be done ª on shelfº by showing that the Hamiltonian

commutes on Vassiliev invariants using the expressions introduced above. It

could also be done ª off shelfº since one has an expression for the Hamiltonian

acting on any function that is loop differentiable, and therefore one can verify

commutation relations with the diffeomorphism constraint.

6. CONCLUSIONS

We have defined an infinite set of spin network diffeomorphism invari-

ants and given some hints about how to construct a complete set of them.

They are given in terms of all the primitive Vassiliev invariants. We have
shown that these invariants are loop differentiable, in the sense of distribu-

tions, and we have given a method to explicitly compute the loop derivatives.

We have defined the Ashtekar constraints in the space of loop-differentiable

functions and we have checked that the Vassiliev invariants are annihilated by
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the resulting diffeomorphism constraint. We have defined a double-densit ized

Hamiltonian constraint whose action on the space of Vassiliev invariants may

be renormalized, but depends on the background metric used in the regulator.
In order to find a fully consistent set of constraints, one needs to define a

single-densitized Hamiltonian constraint and check the consistency of its

algebra in the space of loop-differentiable functions.
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